
Всеукраїнська олiмпiада з iнформатики 2025-2026
II етап. 8-11 класи
26 сiчня 2026

Задача A. Фотографiя

Автор: Андрiй Холод
Роздробник: Павло Цiкалишин
Розбiр пiдготовано: Костянтин Денисов

Фотографiя має розмiр n × n. Рамка товщини t додає смугу шириною t з кожного боку, тому
зовнiшнiй розмiр усiєї конструкцiї дорiвнює (n + 2t) × (n + 2t). Площа рамки дорiвнює рiзницi площ
зовнiшнього квадрата та фотографiї.

Площа фотографiї: Sin = n2.
Площа зовнiшнього квадрата: Sout = (n+ 2t)2.
Отже, площа рамки: S = Sout − Sin = (n+ 2t)2 − n2.

Спростимо вираз: (n+ 2t)2 − n2 = n2 + 4nt+ 4t2 − n2 = 4t(n+ t).
Тому вiдповiдь: S = 4t(n+ t).
Складнiсть. Час: O(1), пам’ять: O(1).
Зауваження. За n ⩽ 109 значення площ може бути порядку 1018, тому слiд використовувати

64-бiтний цiлий тип (наприклад, long long).

Задача B. Пiкнiк

Автор: Андрiй Холод
Роздробник: Павло Цiкалишин
Розбiр пiдготовано: Костянтин Денисов

Потрiбно розбити масив a1, . . . , an на m = k + 1 послiдовних частин так, щоб сума в кожнiй
частинi була однакова, i використати всi шматки. Нехай S =

∑n
i=1 ai. Тодi кожна частина має вагу

T = S/m, отже обов’язково m | S.
Через те, що n ⩽ 5000, можна зробити дуже просту перевiрку: перебрати всi можливi m вiд най-

бiльшого до 1 i перевiрити, чи можна нарiзати на m частин сумою T жадiбно злiва направо. Оскiльки
ми знаємо наперед суму в кожнiй частинi, то далi перший вiдрiзок визначається однозначно, за ним
другий i так далi.

Перевiрка для фiксованого m. Обчислюємо T = S/m i йдемо по масиву, накопичуючи cur та
пiдраховуючи кiлькiсть друзiв cnt:

• cur := cur + ai.

• якщо cur = T , то "закриваємо"частину: cnt := cnt+ 1, cur := 0;

• якщо cur > T , то таке m неможливе (бо всi ai ⩾ 1 i ми вже перебрали суму).

В кiнцi потрiбно, щоб cur = 0 i cnt = m.
Складнiсть. Перебираємо m не бiльше нiж n разiв, кожна перевiрка за O(n), отже загалом O(n2).

За n ⩽ 5000 це проходить. Пам’ять O(n).

Сторiнка 1 з 5

www.uoi.ua

Всеукраїнська олiмпiада з iнформатики 2025-2026
II етап. 8-11 класи
26 сiчня 2026

Задача C. Гра

Автор: Костянтин Денисов
Роздробник: Павло Цiкалишин
Розбiр пiдготовано: Костянтин Денисов

Очевидно, що на вiдрiзку [l, r] треба ставити якнайбiльшi числа, тобто ai = m для всiх l ⩽ i ⩽ r.
Тодi цей вiдрiзок має найбiльший потенцiал, i далi наша задача — зробити так, щоб жоден iнший
пiдвiдрiзок не мiг з ним зрiвнятися за сумою, та ще й серед усiх таких масивiв максимiзувати суму
невiд’ємних елементiв.

Окремий випадок l = r. Тут максимальна сума має бути рiвно m i досягатися лише на позицiї
l. Тому поза l не можна ставити m, iнакше одиночний пiдвiдрiзок з цiєї позицiї теж матиме суму m.
Отже поза l найкраще ставити m − 1. Але треба ще зiпсувати всi пiдвiдрiзки, якi включають l i ще
щось: для цього достатньо розставити −m на кожнiй другiй позицiї, починаючи вiд сусiдiв l − 1 та
l+1. Тодi будь-яке розширення вiдрiзка за межi [l, l] неминуче пiдхопить хоча б один −m, i сума стане
строго меншою за m.

Випадок l < r.
Поза вiдрiзком [l, r] оптимальна конфiгурацiя має максимально багато m, але такi m доводиться

ставити через один, чергуючи з −m; iнакше з’являється занадто великий пiдвiдрiзок поза [l, r] або
пiдвiдрiзок, що "приклеюється"до [l, r].

Тому для префiкса довжини s = l − 1 оптимально ставити (злiва направо):

• якщо s парна, то m, −m, m, −m, . . . , m, −m, m − 1, −m; доводиться ставити одну m − 1, щоб
сума елементiв була вiд’ємна, бо iнакше буде декiлька елементiв з однаковою максимальною
сумою.

• якщо s непарна, то m, −m, m, −m, . . . , m, −m, −m.

Для суфiкса довжини t = n− r робимо аналогiчну (дзеркальну) побудову за парнiстю t.
У будь-якому допустимому масивi поза [l, r] не можна ставити багато великих додатних пiдряд:

кожен додатний m змушений мати поруч достатню "компенсацiю"−m, iнакше з’являється пiдвiдрiзок
з занадто великою сумою, який конкурує з [l, r]. Отже m можна ставити не частiше, нiж через один,
тобто шаблон m,−m,m,−m, . . . дає максимальну кiлькiсть m. У парному випадку рiвно один раз
доводиться замiнити m на m− 1, щоб уникнути рiвностi максимумiв.

Складнiсть. Побудова займає O(n) часу i O(1) додаткової пам’ятi (окрiм виводу).

Задача D. Василько i комп’ютер

Автор: Костянтин Денисов
Роздробник: Павло Цiкалишин
Розбiр пiдготовано: Костянтин Денисов

Сторiнка 2 з 5

www.uoi.ua

Всеукраїнська олiмпiада з iнформатики 2025-2026
II етап. 8-11 класи
26 сiчня 2026

Можна розв’язувати жадiбно: робити перший пiдмасив якомога довшим, потiм другий якомога
довшим, i т.д.

Чому так можна: припустимо, iснує оптимальне розбиття, де перший пiдмасив закiнчується ранiше,
нiж це можливо. Нехай другий пiдмасив починається з елемента x. Якщо додавання x в кiнець першого
пiдмасиву не ламає можливiсть вiдсортувати його стеком, то ми можемо просто "перекласти"x з
початку другого пiдмасиву в кiнець першого. Другий пiдмасив при цьому стає коротшим, але вiн все
одно вiдсортовуваний (бо ми лише забрали з нього перший елемент). Отже завжди iснує оптимальне
розбиття, в якому перший пiдмасив максимально довгий. Те саме мiркування працює для кожного
наступного пiдмасиву.

Тому достатньо йти злiва направо i додавати елементи в поточний пiдмасив, доки це можливо;
коли стає неможливо — робимо розрiз i починаємо новий.

Ми будуємо один пiдмасив злiва направо i симулюємо, як би працювало сортування стеком. Коли
ми кладемо елементи в стек, iнодi ми змушенi викидати деякi зi стеку у вихiдну послiдовнiсть: якщо
прийшов новий елемент x, який бiльший за верхiвку стека, то цю верхiвку вже не можна тримати далi,
бо iнакше x опиниться над меншим елементом i ми нiколи не зможемо отримати вiдсортований вихiд.

Тому правило таке: поки top < x, ми викидаємо top зi стека. Серед усiх викинутих значень за-
пам’ятовуємо найбiльше m. Коли прийдемо до випадку top > x, то в цьому випадку вже не можна
класти верхiвку стеку до масиву, бо тодi новий елемент x точно не буде стояти на своїй позицiї.

m — це фактично найбiльше число, яке ми вже викинули зi стека у цьому пiдмасивi. Тобто у
фiнальнiй вiдсортованiй послiдовностi воно вже стоїть десь злiва, i ми вже не можемо поставити перед
ним щось менше.

Якщо в якийсь момент приходить елемент x та виконується x < m, то все: поточний пiдмасив вже
неможливо вiдсортувати стеком. Чому: число m уже "пiшло"у вихiд i мусить стояти до x у фiнальнiй
послiдовностi, але x < m, отже порядок буде неправильний i це вже не виправити нiякими майбутнiми
дiями зi стеком.

У такому випадку ми зобов’язанi розрiзати масив перед x i почати новий пiдмасив: очищаємо
стек, скидаємо m i збiльшуємо лiчильник частин.

В iнших випадках (top >= m) нескладно збагнути, що можна просто перекинути весь стек у кiн-
цевий масив, щоб вiн був вiдсортованим.

Складнiсть. Кожен елемент один раз заходить у стек i не бiльше одного разу виходить зi стека,
тому час O(n), пам’ять O(n).

Задача E. Подарунки Васильку

Автор: Костянтин Денисов
Роздробник: Павло Цiкалишин
Розбiр пiдготовано: Костянтин Денисов

1) Жадiбний алгоритм в лоб (для одного запиту). Нехай робот запускається на пiдмасивi
a[l..r], пам’ять розмiру m. Пiдтримуємо мультимножину S (вмiст пам’ятi) i покажчик i, який спочатку
дорiвнює l.

Поки будуємо b:

• поки |S| < m i i ⩽ r, додаємо ai в S i i := i+ 1;

• iнакше беремо мiнiмальний елемент з S, записуємо в b, i видаляємо його з S.

Сторiнка 3 з 5

www.uoi.ua

Всеукраїнська олiмпiада з iнформатики 2025-2026
II етап. 8-11 класи
26 сiчня 2026

На кожнiй позицiї b ми беремо найменше число, яке взагалi доступне зараз (тобто вже завантажене
в пам’ять). Якщо на деякому кроцi не взяти мiнiмум, то перша позицiя, де ми вiдхилились, стане
бiльшою — лексикографiчно гiрше.

2) Яка вiдповiдь на k-ту позицiю. Позначимо len = r−l+1 i p = l+k+m−2 (це l+(k+m−1)−1).

• Якщо p > r, тобто k + m − 1 > len, то робот встиг завантажити весь пiдмасив, i вiдповiдь —
просто k-та порядкова статистика на [l, r]: bk = k-те найменше на a[l..r].

• Якщо p ⩽ r, тодi вiдповiдь така: bk = min
(
ap, k-те найменше на a[l..p]

)
.

Доведення формули iндукцiєю по k (випадок p ⩽ r). Позначимо T (k) = l+ k+m− 2 (тобто
T (k) = p) i X(k) — k-те найменше на a[l..T (k)]. Твердження: bk = min(aT (k), X(k)).

База k = 1. До першого вибору робот може завантажити рiвно m елементiв, тобто a[l..l +m− 1].
Тому b1 — мiнiмум серед цих m елементiв, а це рiвно min(al+m−1, 1-ше найменше на a[l..l + m − 1]),
тобто формула виконується.

Перехiд k → k+1. Припустимо, що пiсля k крокiв робот видав b1, . . . , bk за формулою, i розглянемо
крок k + 1.

До моменту вибору (k+1)-го елемента робот може завантажити m+k перших елементiв пiдмасиву,
тобто рiвно a[l..T (k+1)]. На перших k кроках жадiбний алгоритм завжди забирав мiнiмально можливе,
отже вiн забрав рiвно k найменших елементiв серед a[l..T (k+ 1)], окрiм можливої замiни на aT (j) там,
де це було менше — але це якраз i означає, що на кроцi k + 1 серед кандидатiв лишається:

• або aT (k+1), якщо вiн виявився "дуже малим"i пробиває статистику,

• або X(k + 1) як найменший серед тих, що лишились пiсля вилучення k найменших.

Отже жадiбний вибiр на кроцi k + 1 дає bk+1 = min(aT (k+1), X(k + 1)).
Таким чином твердження доведене для всiх k.
Випадок p > r. Тут k +m− 1 > r − l + 1, робот встигає завантажити весь a[l..r], тому b є просто

вiдсортованим a[l..r], i bk — k-те найменше на [l, r].
Як вiдповiсти на q запитiв швидко.
Нам треба багато разiв знаходити k-те найменше число на вiдрiзку [L,R]. Для цього будуємо перси-

стентне дерево вiдрiзкiв по "значеннях де в листках зберiгаємо, скiльки разiв кожне значення зустрi-
лося на префiксi.

1) Щоб були листки 0..n. Значення ai великi, тому спочатку впорядковуємо всi елементи. Сор-
туємо пари (ai, i) за ai i замiнюємо кожен ai на номер його позицiї у вiдсортованому списку (число вiд
0 до n). Масив d зберiгає цей вiдсортований список: якщо листок має номер pos, то справжнє значення
дорiвнює d[pos].first.

2) Персистентнi версiї для префiксiв. Будуємо коренi c[0], c[1], . . . , c[n]. c[i] — це дерево для
префiкса [1..i].

У листку з номером pos зберiгаємо число cnt: скiльки разiв на префiксi [1..i] зустрiлося значення з
номером pos.

У внутрiшнiй вершинi зберiгаємо суму cnt по її дiтях (тобто скiльки елементiв префiкса попадає в
її дiапазон листкiв).

Перехiд вiд c[i−1] до c[i]: ми збiльшуємо на 1 значення в листку, що вiдповiдає ai. Персистентнiсть
означає: копiюємо тiльки вершини на шляху вiд кореня до цього листка, i в них оновлюємо суми; всi
iншi вершини спiльнi з попередньою версiєю. Це O(log n) нових вершин (функцiя add).

3) Як отримати вiдрiзок [L,R] з двох префiксiв. Нехай ми хочемо працювати з пiдмасивом
[L,R]. Для будь-якого листка (тобто конкретного значення) кiлькiсть його появ на [L,R] дорiвнює:
cnt[L,R] = cnt[1,R] − cnt[1,L−1], тобто рiзниця того самого листка в деревах c[R] i c[L− 1].

Сторiнка 4 з 5

www.uoi.ua

Всеукраїнська олiмпiада з iнформатики 2025-2026
II етап. 8-11 класи
26 сiчня 2026

4) Пошук k-го найменшого. Маємо двi версiї дерева: одна для префiкса [1..R], друга для [1..L−1].
Розглянемо будь-яку вершину дерева, яка вiдповiдає деякому дiапазону значень [x, y]. У цiй вершинi
зберiгається число елементiв префiкса, що попали в [x, y]. Тодi кiлькiсть елементiв на вiдрiзку [L,R] у
цьому дiапазонi дорiвнює рiзницi цих чисел у двох версiях.

Щоб знайти k-те найменше, спускаємося вiд кореня до листка. Нехай зараз ми в дiапазонi [x, y]
i mid = (x + y)/2. Дивимось, скiльки елементiв з [L,R] лежить у лiвiй половинi [x,mid]: це рiзниця
значень у лiвих дочiрнiх вершинах двох версiй. Позначимо це число як left.

• Якщо left ⩾ k, то шукане значення лежить у лiвiй половинi, i ми переходимо в лiвих дiтей обох
версiй.

• Iнакше воно лежить у правiй половинi, тодi переходимо в правих дiтей, а k замiнюємо на k− left.

Так ми за O(log n) крокiв дiйдемо до листка, який i вiдповiдає шуканому числу (потiм переводимо
його назад у початкове значення через вiдсортований список).

Складнiсть. Побудова: n додавань, кожне O(log n), разом O(n log n). Кожен запит: O(log n).
Пам’ять: O(n log n) вершин.

Сторiнка 5 з 5

www.uoi.ua

